Численное решение уравнений - Definition. Was ist Численное решение уравнений
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Численное решение уравнений - definition


Численное решение уравнений         
  • Решение уравнения cos(x)=x по методу простой итерации, очередная итерация: x<sub>n+1</sub>=cos x<sub>n</sub>, начальное приближение: x<sub>1</sub> = −1
  • Решение уравнения f(x)=0 по методу Ньютона, начальное приближение: x<sub>1</sub>=a.
АЛГОРИТМЫ НАХОЖДЕНИЯ КОРНЕЙ
Метод последовательных приближений; Численное решение системы нелинейных уравнений; Метод итераций
Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.
ЧИСЛЕННОЕ РЕШЕНИЕ УРАВНЕНИЙ         
  • Решение уравнения cos(x)=x по методу простой итерации, очередная итерация: x<sub>n+1</sub>=cos x<sub>n</sub>, начальное приближение: x<sub>1</sub> = −1
  • Решение уравнения f(x)=0 по методу Ньютона, начальное приближение: x<sub>1</sub>=a.
АЛГОРИТМЫ НАХОЖДЕНИЯ КОРНЕЙ
Метод последовательных приближений; Численное решение системы нелинейных уравнений; Метод итераций
нахождение приближенных численных решений алгебраических и трансцендентных уравнений, в отличие от решений, выражаемых формулами. Численное решение уравнений сводится к выполнению арифметических операций над коэффициентами уравнений и значениями входящих в него функций и позволяет найти решение уравнений с любой наперед заданной точностью. К численному решению уравнений сводятся многие задачи математики и ее приложений.
Численное решение уравнений         
  • Решение уравнения cos(x)=x по методу простой итерации, очередная итерация: x<sub>n+1</sub>=cos x<sub>n</sub>, начальное приближение: x<sub>1</sub> = −1
  • Решение уравнения f(x)=0 по методу Ньютона, начальное приближение: x<sub>1</sub>=a.
АЛГОРИТМЫ НАХОЖДЕНИЯ КОРНЕЙ
Метод последовательных приближений; Численное решение системы нелинейных уравнений; Метод итераций

нахождение приближённых решений алгебраических и трансцендентных уравнений. Ч. р. у. сводится к выполнению арифметических операций над коэффициентами уравнений и значениями входящих в него функций и позволяет найти решения уравнений с любой наперёд заданной точностью. К Ч. р. у. сводятся многие задачи математики и её приложений. Хотя общие методы Ч. р. у. появились лишь в 17 в. (И. Ньютон), но ещё Леонардо Пизанский (начало 13 в.) вычислил корень уравнения х3 + 2x2 + 10x = 20 с ошибкой, меньшей чем В конце 16 в. И. Бюрги (Швейцария) вычислил корень уравнения 9 - 30x2 + 27x4 - 9x6 + x8 = 0, определяющего длину стороны правильного девятиугольника. Приблизительно в то же время Ф. Виет дал метод вычисления корней алгебраических уравнений, сходный с Ньютона методом.

Численное решение алгебраических уравнений разбивается на следующие этапы: 1) выделение кратных корней, сводящее задачу к решению уравнения с простыми корнями; 2) определение границ, между которыми могут лежать корни уравнения; 3) разделение корней, т. е. указание промежутков, каждый из которых содержит не более одного простого корня (см. Штурма правило); 4) грубое определение приближённого значения корня, выполняемое графически или каким-либо иным способом (например, при помощи изучения перемен знака левой части уравнения); 5) вычисление корня с заданной точностью. Наиболее распространёнными методами для этого являются методы ложного положения, метод Ньютона, Лобачевского метод, последовательных приближений метод (См. Последовательных приближении метод), разложение в ряды и т.д.

При численном решении трансцендентных уравнений ограничиваются этапами 4 и 5. О численном решении дифференциальных уравнений см. в ст. Приближённое решение дифференциальных уравнений.

Лит.: Энциклопедия элементарной математики, кн. 2 - Алгебра, М.-Л., 1951; Курош А. Г., Курс высшей алгебры, 11 изд., М., 1975.

Was ist Численное решение уравнений - Definition